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Abstracl. We prove the Clebsch-Gordan property for the couplings of an (untwisted) affine 
Toda field theory utilizing Dorey's conjecture. 

The last two years have seen a renewed interest in a family of massive two-dimensional 
field theories, the affine Toda field theories (ATFT). First investigated [1-3] over a 
decade ago, these classically completely integrable field theories have reappeared in 
the context of perturbations of conformal field theories away from criticality [4-71. 

which satisfy unitarity, crossing and the bootstrap and these agree [1,9,12,14-171 
with low order perturbative calculations. The theories are also amenable to thermo- 
dynamic Bethe ansatz techniques [S, 181. Further, many of the classical properties of 
ATFT appear to survive quantization and this has led to the belief that such theories 
may be completely integrable at the quantum level. Thus in the simply laced cases it 
has been found [9, 121 that to low orders in perturbation theory the classical mass 
ratios are preserved, a necessary ingredient for the S-matrices, and those couplings 
that vanish classically remain vanishing for on-shell fields [19]. These calculations 
involve some tremendous cancellations which are due in large part to the very special 
classical parameters of the theory. 

This letter will prove a property of the classical couplings, the Clebsch-Gordan 
property discussed below, that has been observed [9, 11,15,16,18] in these theories 
and verified to persist at low orders of perturbation theory. To describe this more 
precisely we first recall some of the classical properties of ATFT. 

n.e ATFT hzve mz9y remi?rkab!e properties. S-metri.res hrye bee!? proposed [7-!3! 

The (untwisted) affine Toda lagrangian is 

Here i = A u ( - @ )  is the set of simple roots together with minus the highest root 
0 = Zaea n,a of a simple Lie algebra g of rank n. We adopt the convention n_@ = 1 
so the Coxeter number h of g becomes h = X o e i  n,. Let A, denote the fundamental 
weights of g i.e. if P E A  then ( A , , P ' ) = S . , p  (where a " = Z a / ( a , a ) )  and denote the 
Cartan matrix by KeP =(a", P)a, p E A .  By expanding the potential term in ( I )  we get 

Here M2=m2X, ,an ,aOa  and c = m ' p T m , s n , a O a O a  are the mass matrix and 
three point couplings. The notation is such that if 4 = $'ei is a field in a chosen basis 
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{ei} then cvk is the three point coupling in this basis: cgk= c(e, ,  e,, e k ) =  
m28 Le& n m ( a ,  e,)(., e,)(., e d .  We assume that the classical mass matrix has been 
diagonalized; in the quantum theory the basis will be defined order by order in 
perturbation theory. The highly constrained nature of these Lagrangians is manifested 
in the classical mass spectrum [3] and three point couplings. 

(1) If we form the vector of masses, m = ( m , ,  m,,  . . . , m"), the mass spectrum of 
the (untwisted) affine Toda theories is succinctly expressed [9,11] by: the uector m is 
the (left) Perron-Frobenius eigenuector of the Cartan matrix of g. This eigenvectort is 
the only eigenvector of K whose entries are all of the same sign; we have K T m  = 
4 sin2( a / 2 h ) m .  The correspondence enables one to identify the particle of mass mi 
with the fundamental representation Ai of g. The higher conserved currents of (1) are 
connected with the remaining eigenvectors of the Cartan matrix [ 18,201. Unfortunately 
this correspondence fails for the twisted simply laced algebras. A point of notation: 
when g has complex representations it is helpful to use a complex basis for the equal 
mass fields; in this case T denotes the conjugate field to particle i. Perron-Frobenius 
(PF) eigenvectors arise in the construction of solvable statistical mechanical models 
[21] and the study of operator algebras [22]; they were also observed [18] in the 
context of clastic S-matrices independent of any underlying field theory. The ratios of 
the masses are very special algebraic numbers. For example, if the lowest mass is 
scaled to be 1 then products m,m, are in fact positive integral combinations of the 
iiiabsza fwrrcir g f uOdd, e,, in which case the doiiiaiii of ihe coeikieiiis must be 
enlarged)$. 

(2) The non-zero three point couplings of the simply-laced algebras obey [9,7,10] 
the 'area rule' 

-~ ^^^^ I... L^_ -1 I 

where zUk = *l and A, is the area of the triangle with sides mi, mj and mh. There are 
only slight changes to this formula for the non-simply laced cases: the twisted algebras 
have h replaced by g while the untwisted non-simply laced algebras obey (3) unless 
each of i, j, k correspond to short roots. In this latter case the coupling is reduced 
[7,12,9,10] by the ratio (U - I)J(O,, @,)/(eL, eL), where U is the order of the simply 
laced Dynkin diagram automorphism that upon folding leads to g and OL!sl is the 
highest long (short) root. (Because the untwisted b. algebra has no couplings between 
three short vectors (3) is unmodified in this case.) In terms of the fusion angle e;, 
AGk =$mimi sin 0;. These angles are all integer multiples of a / h .  Using the correspon- 
dence between masses and representations enabled by the PF eigenvector one observes 
a necessary (though in general not sufficient) condition for cVh to be non-zero is that 
the irreducible decomposition of the tensor product of representations V(Ai)O V(Aj)O 
V ( h k )  should contain the trivial representation. Here V(A) is the irreducible representa- 
tion with highest weight A, This is known [ l l ,  15, 161 as the Clebsch-Gordan ( C G )  

property of ATFT. 

t Our definition afthe Cartan matrix dictates that we specify the left eigenvector of K i.e. the right eigenvenor 
of KT. This distinction is irrelevant for the simply laced algebras. We note that for g, and f4 the left and 

particular eigenvector stated follows from either the Clebsch-Gordan property described below, or from 
folding. The left eigenvector of bn is o f  course the right eigenvector of c.. 
$Werner Nahm [23] suggests this property is related to generalized Penrose tilings. The listed simply laced 
exceptions are also distinguished in Ocneanu's work [22]. 

right Pcnan-Fmbeains eigeavcenrr hare thc same c!!!ries bL!! i!! rrwned nrder% !ha! w e  choose the 
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(3) Further one can show for the simply laced (and even the twisted non-simply 
laced) cases each particle has h -2 non-vanishing three point couplings. More precisely 
for fixed k there are h - 2  ordered pairs ( i ,  j) for which cOe is non-zero. In the untwisted 
non-simply laced case this is modified so that if k corresponds to a long root there 
are g-2 ordered pairs while if k corresponds to a short root there are h -  
(eL, e')/(&-, 0,) ordered pairs. 

We have not as yet specified precisely which couplings are non-vanishing. Using 
the PF correspondence this is embodied in: a non-zero coupling cOk exists if and only 
if there exist integers r and s such that 

h i +  c'Aj+csAk = 0 (4) 

and c is a Coxeter element. Here (4) is an equivalent form of Dorey's conjecture" to 
which we now turn. Having established (4) we then prove as a consequence the CO 

property, showing why this is not a sufficient condition to determine the non-zero 
couplings. 

Because the Dynkin diagram of g is a tree it is a bipartite graph; consequently the 
simple roots A = {a,, . , . an} may be partitioned into two sets of mutually orthogonal 
roots: A=ou* ,  where o={a, , .  , .  ah] and * = { a x +  ,,... a,}. A Coxeter element c is 
then a product of all of the simple reflections w, defined by the simple roots a E A. 
Different orderings of the simple roots lead to conjugate Coxeter elements and for our 
purposes ii is usehi  io wriie c = GK. where ~ = i i , . ~  w, and simiiariy for C. in  ietms 
of their actions on the roots we have 

Steinberg [24] and Kostant [25]  have established many beautiful results describing 
the action of Coexter elements c on @, the root system of g. Of relevance for ATFI is 
the fact c separates @ into n orbits: Q =U:=, Q j  where @; ={c'q$: Os r s  h - 1) and 
the $# are the positive roots of @ which become negative roots under the action of c. 
Explicitlyt $$ = wanwen., , . . w,,+,aj whence .bj = sai i = 1, . . . k and +j = aj j = 
k + l , .  . , n. We see c k = - a r  i =  1,. . . k and c+j = - G a j j  = k + l , ,  . . n thus & ( i ) a j E Q i  
where E (  i )  = 1 (ai E *) and E (  i )  = -1 (a;  E 0) are 'colour' factors. Further, those elements 

{cC'+<: O S r = Z ( h / 2 ) - 1 }  when h is even or when h is odd (only the case seven) 
@+nQj ={c-'bj: O s r s  H ]  where H = (h  -1)/2- 1 if i <  k orH = ( h  -1) /2ifk+1< i. 
Equivalently the longest word w, of the Weyl group is chi2 when h is even and w.c'~-')/* 
when h is odd. These facts follow from a connection$ between the eigenvalues and 
eigenvectors of the Cartan matrix and Coxeter element [28] which is the reason [30,31] 
behind the PF correspondence of ATFI masses. This connection is made manifest with 
the identity of Steinberg [26]: 

ir? e.& arbit which are positive roo& are nice!y characterized: @+nQl{ = 

G+C.=~--K' ( 6 )  

which follows from ( 5 ) .  To each eigenvector of the Cartan matrix can one associate 
a two-plane in root space on which the Coxeter element acts naturally. Thus if x is a 
(right) eigenvector with corresponding eigenvalue i then upon setting p = So xi& and 

t Steinberg [24] deals with the roots pi = - c 6 .  
t Indeed these connecliom extend to the affine root systems as well [26-281, though some changes are 
needed [29] for the case of Len. 
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u=ZY.x;Ai one has I ; ,x ,a i=2(p+u) and Lxjai=(?-2) , . t+2v.  Thesesuffice to show 
the plane spanned by p, U is left invariant by the dihedral group D,, = (c; = c: = ch = 1). 
In particular when x = m, the PF eigenvector, each root of @; projects onto a circle of 
radius m; on this plane and 4 acts faithfully. In this case the lines defined by p and 
v are at an angle of ?r/ h and a E 0 projects onto p while n E projects onto v. 

With this background Dorey's conjecture [20] takes the following form. There is 
a non-zero coupling between three particles i, j, k if and only if there exist integers r, s 
such that 

(7) 4; + C'rpj + C3C#Jk = 0. 

Actually Dorey's conjecture is made in a context somewhat wider [32] than ATFT but 
has only been proven in the more restricted situation of (untwisted) affine Toda theories. 
We initially verified (7) on a case by case basis simply enumerating the possibilities 
for exceptional g; more recently an elegant invariant proof of both this and (3) has 
been given [31] using Lie algebraic techniques. Many of the classical results described 
so far can be proven on the basis of (7) and Steinberg's results: because of the projection 
properties onto the plane associated with the Perron-Frobenius eigenvector the result- 
ing triangles must have angles with integer multiples of m j h  and (3) holds; in the 
simply laced case Dorey [20] has argued that the h -2 property also results. A caution 
is perhaps warranted at this juncture: the pair ( r ,  s) arising from (7) is not unique; 
there are in fact two such pairs for each such coupling specified in this form. That 
there are at least two arises because we can always 'flip' the triangle (replace c with 
c-' in our discussion); that there are only two follows from elementary geometry or 
by examining the allowed ranges of r and s. For example Steinberg's characterization 
of the positive roots forbids 1 - [ h j 2 1  S r, s < 0 as the sum of three positive roots cannot 
vanish, and so on. If (r,  s)  and (r', s') are the two flipped pairs then r + r ' +  
f[s(j) - E (  i)] = h. 

It remains to demonstrate the CG property follows from (7) and for this it easier 
to first show its equivalence with (4). We may express the fundamental weights Ai in 
terms of the C#Ji as follows [25]: 

4 = A ,  - c - 'A; .  (8) 

(Using ( l - ~ ) ~ ' = - l / h ~ ~ ~ ] p c ~ = I j h I ; ~ , , p c ~ ~  this may be inverted to yield A i =  
l l h  X:-, pep+(; the averaging operators, P, = l j h  w-*'ck, where w is an hth root 
of unity, are projectors.) Using (8) we may express (7) io the following form 

A c  + c'Aj+ c"Ak = c(A; + c'Aj+c"Ak). 

Now as the Coxeter element has no fixed nonzero eigenvector this equation requires 
both sides to vanish. Thus we arrive at our characterization of the coupling (4). 

Finally we show that V(A7) is an irreducible component of V(Aj)O V ( & )  so proving 
the CG property. (Our notation was such that V(Ai) = V(A;)*.) To prove this we recall 
a conjecture of Parthasarathy, Ranga Rao and Varadarajan [33] (PRV) only recently 
proven [34]. The PRV conjecture says that for any element U in the Weyl group W of 
g and any highest weights A and p then V ( [ h  + up]) occurs with multiplicity at  least 
one in V ( A ) @ V ( p ) ,  where [Afupj is the dominant weight conjugate to A+up. 
Actually Kostant gave a strengthened form of the PRV conjecture which gives the 
multiplicities but we shall not need this here. 

Combining the PRV result and (4) we have V([ -c'-'AJ) is an irreducible component 
of V(Aj)O V(Ak). Now [-c'-'A;] = [-A;] and to obtain the CG property we observe 
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[ -Ai l  = A T .  Indeed woAi = -A:. (When g has only real representations wo= chi2 is the 
central inversion which sends all roots to their negatives.) 

Thus the CG property is a direct consequence of (4) and we have shown ATFT 

possess this at the classical level. Before concluding however it is instructive to illustrate 
how the 'holes' in the cc-coupling correspondence arise. These are the situations when 
the CG decomposition allows a coupling that actually vanishes in the Toda theory. A 
simple example is given [16, 111 by d , .  With A2 denoting the adjoint representation 
we have V(A,)c  V(AJOV(A2) but there is no corresponding coupling c222. In this 
case one finds A2+c3A,=uA2 where U =  W,~W,,,W,,W,,. The point is that -U is not 
conjugate to a power of c and so (4) fails to be satisfied. The PRY result, which allows 
conjugation by an arbitrary element of the Weyl group, is less stringent and that is 
why more non-zero CG allowed couplings exist than actually arise in Toda field theory. 
The ATFT couplings are even more restricted than g invariance would dictate: one 
suspects this hidden symmetry is part of the reason behind their striking classical and 
quantum behaviour. 
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